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OF A P R E - S E P A R A T E D  F L O W  ON A N  A I R F O I L  

N. D. Dikovskaya and B. Yu. Zanin UDC 532.516 

The problem of the origin and evolution of two-dimensional waves of unstable disturbances 
in the boundary layer on an airfoil in the region of adverse pressure gradient in the pre- 
separation flow region is solved numerically. The stability of the experimental velocity profiles, 
including the inflected profiles, is studied. As a result of the calculations, the boundaries of 
the instability region and the parameters of the maximally unstable disturbances (frequency, 
growth rate, wavelength, and propagation velocity) are determined for each velocity profile. The 
characteristics obtained in the present work are in good agreement with the real experimental 
parameters of instability waves. 

I n t r o d u c t i o n .  Studies of the origin of turbulence on an airfoil under flight and model conditions [1, 
2] showed that the transition from laminar to turbulent flow in the boundary layer occurs as a result of the 
appearance, development, and destruction of a packet of instability waves in the region of adverse pressure 
gradient in the tail part of the airfoil. The mean-velocity profiles in the boundary layer in this part of the airfoil 
acquire a shape with an inflection point, and further downstream the separation of the laminar boundary layer 
with subsequent turbulent reattachment occurs, i.e., a laminar separation bubble is formed on the airfoil. The 
appearance of a discrete wave packet in a pre-separated flow was also observed in other experiments [3, 4]. 
However, it is rather difficult to study experimentally the initial stages of the evolution of perturbations, 
since the disturbance amplitudes/Lre smaller than the level of background fluctuations in the boundary layer 
and hot-wire measurements do not yield the necessary information. Therefore, the objective of the present 
work was to calculate the evolution of disturbances at the early stage of development, which is unavailable 
for experimental observation. To study the initial stage of the origin of turbulence in the boundary layer, 
the stability of the experimentally measured mean-velocity profiles was analyzed numerically. The numerical 
studies should answer the following questions: at which place in the boundary layer the packet of instability 
waves appears for the first time and how the changes in the shape of the mean-velocity profiles affect the 
characteristics of flow stability when the separation point is reached. The results obtained were compared 
with experimental [2] and numerical [5-7] data on the evolution of instability waves. 

1. E x p e r i m e n t a l  Da ta .  The experiment [2] was conducted in a T-324 low-turbulent wind tunnel of 
the Institute of Theoretical and Applied Mechanics (ITAM) of the Siberian Division of the Russian Academy 
of Sciences, which has a level of flow turbulence lower than 0.04%, on an airfoil with an NACA profile and a 
mean chord b = 270 mm. The results used in calculations were obtained for an angle of attack of the model of 
4 ~ and a free-stream velocity U0 = 25 m/sec. Figure 1 shows the distributions of the static-pressure coefficient 
Cp (the solid curve) and the longitudinal static-pressure gradient dCp/dX (the dashed curve) along the chord 
of the model (a), the profiles of the longitudinal component of the mean velocity U(y) in the boundary layer 
in different cross sections X = x/b = 0.19-0.59 (b), and the frequency spectra of fluctuations at the line of 
equal mean velocities U = 0.5U0 (c). 
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The static-pressure measurements show that there are two local minima in the pressure distribution on 
the model surface and, hence, two regions with adverse pressure gradient: near the leading edge and in the tail 
part of the model (X > 0.3). In each of these regions, an individual packet of instability waves appears and 
develops, which is evidenced by the frequency spectra of fluctuations (Fig. lc). The appearance of the first 
wave packet with a frequency of 0.79 kHz is apparently caused by the presence of a small region of adverse 
pressure gradient in the nose part of the airfoil. The wave formed here degrades, and this degradation continues 
when this wave enters the second region of adverse pressure gradient, where its own packet of instability waves 
with a frequency of 1.94 kHz appears and develops. The amplification of the latter wave packet leads to the 
transition. This wave packet appears in the frequency spectra only at X = 0.52, where its amplitude becomes 
greater than the amplitude of background fluctuations in the boundary layer. 

The measurements show (Fig. lb) that an inflection point appears in the mean-velocity profiles U(y) 
in the region of adverse pressure gradient (X > 0.3); hence, the flow acquires inviscid instability in addition 
to viscous instability. The laminar form of the boundary-layer flow remains up to the cross section X = 
0.55, where the velocity fluctuations do not exceed 1%. The mean-velocity profiles gradually acquire a pre- 
separated shape, but the flow remains attached until the cross section X = 0.52. An analysis of the stability 
of experimentally measured mean-velocity profiles is given below. 

2. Ca lcu la t ion  of  Stabil i ty.  The stability of a laminar boundary layer developing under the conditions 
of gradient flow was calculated within the framework of the linear theory of the growth of small perturbations 
under the assumption of "local parallelism" of two-dimensional flow. Two-dimensional disturbances were 
considered, which are fluctuations periodic in time (u, v) = [u~ v~ exp [i(ax - wt)]. Here a = ar + ioq 
(at is the wavenumber and ai is the spatial growth rate of the disturbance) and w = 2 r f  is the angular 
frequency of the wave. For ai > 0, the perturbations propagating in the streamwise direction degrade, and 
the flow is stable. For ai < 0, the perturbations increase, i.e., the flow is unstable. 

We solved the eigenvalue problem for the Orr-Sommerfeld equation written for the perturbation 
amplitudes v~ (in what follows, the superscript 0 is omitted for simplicity): 

( v "  - _ + i rte( U - - + i ReU"  = 0 .  ( 2 . 1 )  

Here ( )' = d( )[dy and U is the main-flow velocity in the boundary layer with the boundary conditions of 
decaying perturbations on the wall and in the external flow: v(0) = v'(0) = 0 for y = 0 and v(y) = v'(y) = 0 
for y ---, er 
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All quantities in Eq. (2.1) are normalized to the velocity Ue at the boundary-layer edge and to 
the complex (61[1.72). Here Re = Ue(61/1.72)/u is the Reynolds number, F = 27r.fu/U~ is the frequency 
parameter, u is the kinematic viscosity, w = F .  Re is the dimensionless frequency, cT = w/aT is the phase 
velocity of wave propagation along the flow, and 61 is the displacement thickness. The amplitude of the 
longitudinal component of velocity fluctuations was found from the relationship u(y) = v ' / ( - ia i ) .  

In solving Eq. (2.1), we used the fourth-order Runge--Kutta method for differential equations, 
orthogonalization methods, and the method of iterations; the iterations were conducted using the Newton 
method. In most cases, the eigenvalues were determined to an accuracy ~,f 10 -s.  

We assumed that the dependence U(y) near the surface is described by the trinomial 

U(y) = al + a2y + asy 2. (2.2) 

The last term is introduced into Eq. (2.2) because of the pressure gradient at the outer edge of the 
boundary layer. According to [8], we have 

- (2.3) dX dy 2 ' 

where k is a coefficient that depends on the method of normalization of the entering quantities. It follows 
from Eqs. (2.2) and (2.3) that  d2U]dy 2 = 2a3 and dGp/dX = 2a3k, where a3 = (1 /2k)dGp/dX ~ O. The 
coefficients al and a2 were found from the known values of velocity at two measurement points nearest to 
the surface. Then the allowance y* from the condition U(y*) = 0 was introduced to correct the systematic 
experimental error caused by the difficulties in measurement of the small quantities y and U. For all profiles 
U(y) considered, the value of y* did not exceed 0.08 mm. In some cases, we had to vary the value of U at the 
measurement point nearest to the surface within the experimental uncertainty to satisfy condition (2.3). The 
thus-supplemented profiles U(y) were smoothed using polynomials of power n = 5 and n = 6, which allowed 
us to satisfy the requirements of smoothness of the functions U(9'), U'(y), and U"(y). 

3. C a l c u l a t i o n  R e s u l t s .  The calculation of the evolution of perturbations in the boundary layer 
along the airfoil chord in the range X = 0.15-0.52 shows that  the flow is stable to all perturbation frequencies 
only in two first cross sections X = 0.15 and X = 0.22 located in the region of favorable pressure gradient 
(Fig. la). 

Figure 2a shows the spatial growth rate of the perturbations in the dimensional form vti(f) for the 
cross sections X = 0.22, 0.3, 0.37, 0.44, and 0.52 (curves 1-5, respectively). It follows that  the flow is stable 
and there are no increasing perturbations in the cross section X = 0.22 (in the region of favorable pressure 
gradient). In the cross section X = 0.3 located in the beginning of the region of adverse pressure gradient, the 
peak value of the spatial growth rate ( -a i )m,  which is at the frequency f m =  1.8-1.9 kHz, is close to zero. 
Taking into account the difficulties in measurement of the experimental velocity profile, and also the strong 
dependence of ai on the method of approximation and the rather stable value of fm (see [9]), we can assume 
that the first increasing perturbation frequency is located in the cross section X = 0.3. Further downstream, 
the range of unstable frequencies A f  expands, and the spatial growth rate - a i  increases by three orders of 
magnitude over the length from X = 0.37 to X = 0.52. 

Figure 2b shows the calculated Strouhai numbers Sr = f62/U~ for the neutral (curves 1 and 2) and 
maximally increasing perturbations (curve 3), and also the phase velocity c~ of propagation of perturbations 
corresponding to the second branch of the neutral stability curve (curve 4) and the velocity Ui at the inflection 
point (curve 5) in each cross section. The value of Sr for the maximally growing frequencies remains almost 
constant and equal to 0.0068 for all cross sections, except for the last one (X = 0.52) in which the Strouhal 
number increases to 0.01. The range of unstable frequencies gradually expands due to the involvement of both 
high and low frequencies down to zero values of w at X = 0.52. The amplification of perturbations in the 
low-frequency range is typical of free shear flows [7] wherein the inviscid instability is determining. It was in 
this cross section that a peak at the frequency f0 = 1.94 kHz was experimentally registered for the first time 
(see Fig. lc). The Strouhal number Sr0 = 0.012 corresponding to this frequency and marked by diamonds in 
Fig. 2b demonstrates good agreement between the calculated and experimental data. 
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The contribution of inviscid instability in the cross section X = 0.52 can be evaluated from the Strouhal 
number Sr* = f62/U* calculated from the mean shear velocity U* = Ue/2, as is done for mixing layers, for zero 
velocity of one of the flows. The resultant value Sr* = 0.022 corresponds to the growth rate of perturbations 
for the free shear flow, which is roughly equal to 75% of the maximum value [7]. This indicates that  inviscid 
instability plays an important,  though not an exclusive role in the cross section considered. 

Muti Lin and Pauly [6] simulated numerically a similar flow and obtained Sr = 0.0066. They associate 
this frequency with the shedding of vortices which arise in the beginning of the laminar separation bubble. 
However, it follows from our calculations that the maximally growing frequency f , , ,  which corresponds to the 
peak in the perturbation spectra observed experimentally (see Fig. lc), exists prior to flow separation, i.e., in 
an attached boundary layer. 

At the early stage of evolution of the perturbations, the velocity Ui at the inflection point (curve 5 in 
Fig. 2b) is substantially smaller than the phase velocity cr of propagation of the perturbations that correspond 
to the second branch of the neutral stability curve (curve 4 in Fig. 2b), which coincides with the calculation 
results [5]. Further downstream, as the inflection point moves away from the surface, the velocity Ui increases 
and coincides with the corresponding value of cr in the cross section X = 0.52, i.e., according to [7], the main 
mechanism of evolution of the perturbations in this cross section is the inviscid instability. 

Thus, we can see from Fig. 2b that viscous instability exists together with inviscid instability on 
the airfoil in the region of adverse pressure gradient for profiles with an inflection point. Moreover, viscous 
instability plays a dominant role in the beginning of this region until the cross section X = 0.44. Further 
downstream, in the cross section X = 0.52, the governing mechanism of evolution of the perturbations is the 
inviscid instability, though the viscous instability is still present. 

The results obtained allow us to find the point of appearance of perturbations with the frequency 
f0 = 1.94 kHz, which were observed experimentally in the cross section X = 0.52, and trace the regularities 
of their development in the region unavailable for experimental observation (upstream to X = 0.52). The 
calculated frequencies fm of the maximally increasing perturbations versus the X coordinate are shown in 
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Fig. 2c (curve 1) in comparison with the experimental value of f0 (the point ca). The calculated (curve 2) and 
experimental (curve 3) spatial growth rates ( -a i )0  of the perturbations at the frequency f0 are also plotted 
here. 

It can be seen that increasing perturbations with the central frequency equal to f m =  1.8-1.9 kHz, i.e., 
corresponding to the value of f0, appear in the boundary layer in the beginning of the flow deceleration region 
(near X = 0.3). Further downstream, the frequency f0 is outside the amplification region, i.e., under stabilizing 
conditions, and its growth rate is ( -a i )0  < 0. Still further downstream, in the cross section X = 0.52 with 
a wide range of unstable frequencies and a rather flat maximum in the dependence vii(f), the perturbations 
with the frequency f0 enter the region with rather high growth rates (-ai)o > 0 and rapidly increase. The 
behavior of the calculated and experimental curves (-r versus X are in good qualitative agreement. 

Thus, the peak frequency f0 = 1.94 kHz, which was observed experimentally at X = 0.52 for the first 
time, is close to the calculated maximally increasing frequency f m =  1.8-1.9 kHz for the cross section located 
much more upstream, in the beginning of the region of adverse pressure gradient (X = 0.3). 

In addition, the calculations show that in the region of viscous instability the wavelength A of the 
maximally increasing perturbations that arise in this cross section depends on the local boundary-layer 
thickness 6, which is described by the formula )~ = 2rr6 proposed by Zanin [2]. 

Conclusions.  The stability of the laminar boundary layer has been calculated. The calculation is based 
on the measured mean-velocity profiles on an airfoil. The characteristics of evolution of the perturbations in 
the boundary layer at the early stage O f their development, which is unavailable for experimental observation, 
have been determined. It is shown thai unstable perturbations appear for the first time in the beginning of the 
region of adverse pressure gradient. Further downstream, the region of unstable frequencies expands, but the 
dimensionless maximally increasing frequency wm and the corresponding Strouhal numbers change little as 
long as the velocity at the inflection point is smaller than the propagation velocity of the perturbations. 
In this region, viscous instability is realized even in the presence of an inflection point in the mean- 
velocity profiles. Further downstream, when the velocity at the inflection point reaches the value of the 
perturbation propagation velocity, the governing mechanism of evolution of the perturbations becomes the 
inviscid instability, and a rapid increase in the amplitude of fluctuations is observed. 

The central frequency f0 of the wave packet observed in the frequency spectra in the pre-separated flow 
is determined by the boundary-layer characteristics in the upstream cross section, namely, by the beginning 
of the region of adverse pressure gradient. 

Good qualitative agreement between the variation of the growth rate of perturbations ( -a i )0  along 
the chord and the frequency f0 obtained in the calculation and observed in the experiments is noted. 

The authors are grateful to Dr. A. Hanifi from the Royal Institute of Technology (Stockholm, Sweden) 
for the kindly granted code for calculating the stability of the subsonic two-dimensional boundary layer [10]. 
We adapted the code and made some changes, which allowed us, in particular, to calculate the stability of 
the mean-velocity profiles measured experimentally. 
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